epical

Release 2.0.0

Liguo Wang, Tao Ma, et al

OVERVIEW

1	Introduction	1
2	Available clocks for Human	3
3	Available clocks for Mouse (Mus Musculus)	5
4	Installation 4.1 Prerequisites	7 7 8 8
5	Test datasets 5.1 Test data 1 5.2 Test data 2 5.3 Test data 3 5.4 Test data 4 5.5 Test data 5 5.6 Test data 6 5.7 Test data 7	9 9 9 10 10 10 11 11
6	Horvath13 6.1 Usage	13 13 13 16
7	Horvath13_shrunk 7.1 Usage	19 19 21
8	Horvath18 8.1 Usage	23 23 25
9	Levine 9.1 Usage 9.2 Example	27 27 29
10	Hannum 10.1 Usage	3 1

	10.2 Example	33
11	Zhang_EN 11.1 Usage	
12	Zhang_BLUP 12.1 Usage	
13	AltumAge 13.1 Usage	
14	Cortical 14.1 Usage 14.2 Example	
15	MEAT 15.1 Usage	
16	EPM 16.1 Description 16.2 Usage 16.3 Example 16.4 Ouput	55 57
17	Lu_DNAmTL 17.1 Usage	
18	PedWu 18.1 Usage	
19	PedBE 19.1 Usage 19.2 Example	
20	GA_Bohlin 20.1 Usage	
21	GA_Haftorn 21.1 Usage	
22	GA_Knight 22.1 Usage	
23	GA_Mayne 23.1 Usage 23.2 Example	

Inc	dex	123
32	Reference	121
31	LICENSE	119
30	mmBlood 30.1 Usage 30.2 Example	
29	mmLiver 29.1 Usage	
28	YOMT 28.1 Usage 28.2 Example	
27	WLMT 27.1 Usage	
26	GA_Lee_rRPC 26.1 Usage 26.2 Example	
25	GA_Lee_RPC 25.1 Usage 25.2 Example	95 95 97
24	GA_Lee_CPC 24.1 Usage	91 91 93

ONE

INTRODUCTION

Aging is a multifaceted, time-dependent process influenced by various factors, including genetics, lifestyle, nutrition, mental well-being, as well as social and environmental conditions. Consequently, the aging speed can significantly differ among individuals, rendering **chronological age** (i.e., the number of years a person has been alive) an inadequate indicator of a person's overall health status and predictive value for disease onset and treatment responses. In contrast, **biological (or physiological) age** employs bio-physiological measurements to more accurately gauge an individual's life clock¹².

DNA methylation-based biological age estimation has been widely used; however, a universally applicable bioinformatics tool is currently lacking. The Epical package provides a number of commands to calcuate epigenetic ages from DNA methylation data generated from Illumina HumanMethylation450 BeadChip (450K), MethylationEPIC v1.0~(850K) or MethylationEPIC v2.0~array.

¹ Maltoni R, Ravaioli S, Bronte G, et al. "Chronological age or biological age: What drives the choice of adjuvant treatment in elderly breast cancer patients?" Transl Oncol (2022).

² Rutledge J, Oh H, Wyss-Coray T. "Measuring biological age using omics data". Nat Rev Genet (2022).

AVAILABLE CLOCKS FOR HUMAN

	Clock_name	Predictor CpGs	Unit	Tissue	Method
1	Horvath13	353	Year	Pan-tissue	Elastic Net
2	Horvath13_shrunk	110	Year	Pan-tissue	Elastic Net
3	Horvath18	391	Year	Skin & blood	Elastic Net
4	Levine	513	Year	Blood	Elastic Net
5	Hannum	71	Year	Blood	Elastic Net
6	Zhang_EN	514	Year	Blood, Saliva	Elastic Net
7	Zhang_BLUP	319607	Year	Blood, Saliva	BLUP
8	AltumAge	20318	Year	Pan-tissue	DNN
9	Cortical	347	Year	Brain cortex	Elastic Net
10	MEAT	200	Year	Skeletal muscle	Elastic Net
11	EPM	n/a	n/a	n/a	EM
12	Lu_DNAmTL	140	Kb	Blood	Elastic Net
13	Ped_Wu	111	Year	Blood	Elastic Net
14	PedBE	94	Year	Buccal epithelial	Elastic Net
15	GA_Bohlin	96	Day	Cord blood	LASSO
16	GA_Haftorn	176	Day	Cord blood	LASSO
17	GA_Knight	148	Week	Cord blood	Elastic Net
18	GA_Mayne	62	Week	Placental tissues	Elastic Net
19	GA_Lee_CPC	546	Week	Placental tissues	Elastic Net
20	GA_Lee_RPC	558	Week	Placental tissues	Elastic Net
21	GA_Lee_rRPC	395	Week	Placental tissues	Elastic Net

Note:

- Input data for these clocks are generated from Illumina 'BeadChip' methylation array.
- The "EPM" algorithem needs user provide training data.
- All the commands (i.e. Clock_name) are case-sensitive.

AVAILABLE CLOCKS FOR MOUSE (MUS MUSCULUS)

	Clock_name	Predictor CpGs	Unit	Tissue	Method
1	WLMT	435	Day	Pan-tissue	Elastic Net
2	YOMT	329	Day	Pan-tissue	Elastic Net
3	mmLiver	148	Day	Liver	Elastic Net
4	mmBlood	90	Day	Blood	Elastic Net

Note:

- Input data for these clocks are generated from RRBS (Reduced-Representation Bisulfite Sequencing) or WGBS (Whole Genome Bisulfite Sequencing).
- WLMT = Whole Life Multiple Tissue. This clock was trained from mice aged 6 to 30 months.
- YOMT = YOung Multiple Tissue. This clock was trained from mice aged 0 to 10 months.

FOUR

INSTALLATION

Epical is coded in Python. It needs Python 3 (version >= 3.5.x and <= 3.11.x) or a later version for installation and execution.

4.1 Prerequisites

- Python 3 (>=3.5.x, <3.11.x)
- pip3
- R

4.2 Python Dependencies

- pandas
- numpy
- scipy
- sklearn
- bx-python
- matplotlib
- EpigeneticPacemaker
- TensorFlow

Note: As of Jan 10, 2024. TensorFlow does NOT support Python 3.12 and 3.13

Note: Users do NOT need to install these packages manually, as they will be automatically installed if you use pip3.

4.3 Install Epical

```
# Create virtual environment. In this example, we used conda to create a virtual environment named bioage. conda create -n bioage
```

```
Collecting package metadata (current_repodata.json): done
Solving environment: done
# Activate the bioage virtual environment
conda activate bioage
# Install epical
pip3 install epical
Collecting epical
  Downloading epical-0.0.1-py3-none-any.whl.metadata (2.4 kB)
Requirement already satisfied: numpy in /Library/Frameworks/Python.framework/Versions/3.
→11/lib/python3.11/site-packages (from epical) (1.26.3)
Collecting scipy (from epical)
  Downloading scipy-1.11.4-cp311-cp311-macosx_10_9_x86_64.whl.metadata (60 kB)
      60.4/60.4 kB 923.3 kB/s eta 0:00:00
Collecting scikit-learn (from epical)
 Downloading scikit_learn-1.3.2-cp311-cp311-macosx_10_9_x86_64.whl.metadata (11 kB)
Collecting bx-python (from epical)
```

4.4 Upgrade Epical

pip3 install epical --upgrade

4.5 Uninstall *Epical*

pip3 uninstall epical

TEST DATASETS

We provide seven test datasets generated from using Illumina HumanMethylation450 (450K), MethylationEPIC v1.0 (850K), MethylationEPIC v2.0 and RRBS.

5.1 Test data 1

	Test data 1
Source	Mayo Clinic
Tissue	Blood
Platform	MethylationEPIC v1.0 (850K)
# of CpG	865859
# of samples	20
Age range (year)	(49, 82)
Data file	Test1_blood_N20_EPICv1_beta.tsv.gz
MD5 (Data file)	528a5896bcaae4a77757c35c7abcd507
Meta info file	Test1_blood_N20_EPICv1_info.tsv

5.2 Test data 2

	Test data 2
Source	GEO (GSE56105)
Tissue	Blood
Platform	HumanMethylation450 (450K)
# of CpG	478313
# of samples	80
Age range (year)	(10, 60)
Data file	Test2_blood_N80_450K_beta.tsv.gz
MD5 (Data file)	95e5f8ca6ab10c015644a0ff03b4b7be
Meta info file	Test2_blood_N80_450K_info.tsv

5.3 Test data 3

	Test data 3
Source	Mayo Clinic
Tissue	Liver
Platform	HumanMethylation450 (450K)
# of CpG	485512
# of samples	32
Age range (year)	(2, 81)
Data file	Test3_liver_N32_450K_beta.tsv.gz
MD5 (Data file)	a868457bd3d50aadeb5f34d50ef82dc6
Meta info file	Test3_liver_N32_450K_info.tsv

5.4 Test data 4

	Test data 4
Source	GEO (GSE229715)
Tissue	Brain
Platform	MethylationEPIC v2.0
# of CpG	853304
# of samples	16
Age range (year)	(0.4, 77)
Data file	Test4_brain_N16_EPICv2_beta.tsv.gz
MD5 (Data file)	ec566e0cf5b5dd48ed4797e132b326dd
Meta info file	Test4_brain_N16_EPICv2_info.tsv

5.5 Test data 5

	Test data 5
Source	GEO (GSE62924)
Tissue	Cord Blood
Platform	450K
# of CpG	484667
# of samples	38
Age range (week)	(34, 41)
Data file	Test5_CordBlood_N38_450K_beta.tsv.gz
MD5 (Data file)	0cf912f55a43dbbadaab8fd2371811be
Meta info file	Test5_CordBlood_N38_450K_info.tsv

5.6 Test data 6

	Test data 6
Source	GEO (GSE44667)
Tissue	Placental chorionic villus
Platform	450K
# of CpG	430685
# of samples	40
Age range (week)	(24, 38)
Data file	Test6_Placentas_N40_450K_beta.tsv.gz
MD5 (Data file)	8cb8074657a8b8d1b11e96bd1cce4165
Meta info file	Test6_Placentas_N40_450K_info.tsv

5.7 Test data 7

	Test data 7
Source	GEO (GSE121141)
Tissue	Mouse multiple tissue.
Platform	RRBS
# of CpG	994
# of samples	81
Age range (days)	(180, 900)
Data file	Test7_mouse_N81_RRBS_beta.tsv
MD5 (Data file)	98456e98a2ffddb9e78b048e048279fe
Meta info file	Test7_mouse_N81_RRBS_info.tsv

5.6. Test data 6

SIX

HORVATH13

The Horvath13 command calculates the DNA methylation clock developed by Steve Horvath, as published in 2013¹.

Predictor CpGs	353
Unit	Year
Target Tissue	Pan-tissue or multiple tissue
Target Population	Adult
Method	Elastic Net regression.
Reference	Horvath, S. Genome biology (2013).

6.1 Usage

```
usage: epical Horvath13 [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                        [-f {pdf,png}] [-m meta_file] [-l log_file]
                        [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                        [--overwrite] [--debug]
                        Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
  -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
```

¹ Horvath S. DNA methylation age of human tissues and cell types [published correction appears in Genome Biol. 2015;16:96]. Genome Biol. 2013;14(10):R115. doi:10.1186/gb-2013-14-10-r115

"<PREFIX>.DNAm_age.tsv": This file contains the predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10:

```
Fill the missing values with **external reference** If

10 is specified, an external reference file must be
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

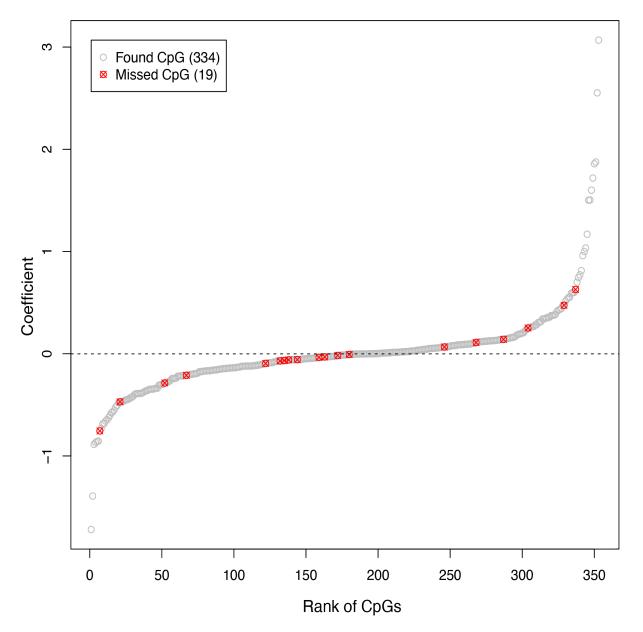
--overwrite
If set, over-write existing output files.
--debug
If set, print detailed information for debugging.
```

6.2 Example-1

Input

\$ epical Horvath13 Test1_blood_N20_EPICv1_beta.tsv.gz -o output1

The beta value spreadsheet (Test1_blood_N20_EPICv1_beta.tsv.gz) is the only required input file.

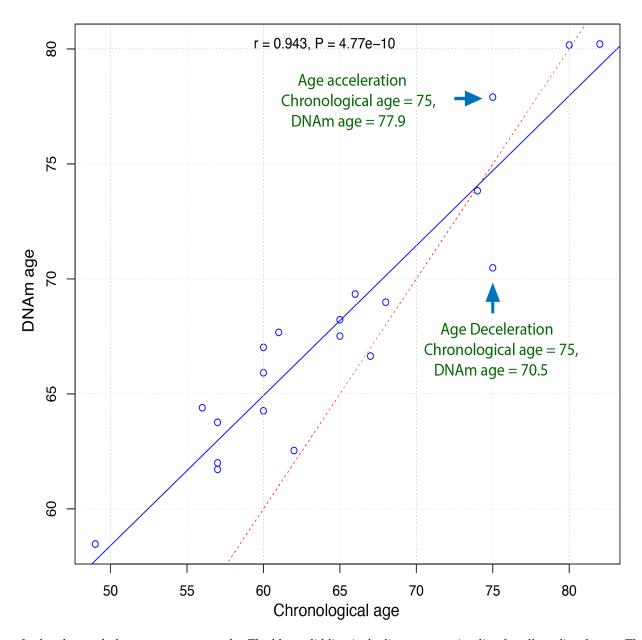

```
2024-01-07 09:15:01 [INFO] The prefix of output files is set to "output1".
2024-01-07 09:15:01 [INFO] Loading Horvath13 clock data ...
2024-01-07 09:15:01 [INFO] Clock's name: "Horvath13"
2024-01-07 09:15:01 [INFO] Clock was trained from: "Pan-tissue"
2024-01-07 09:15:01 [INFO] Clock's unit: "years"
2024-01-07 09:15:01 [INFO] Number of CpGs used: 353
...
```

Output

A total of 6 files are generated.

- 1. output1.predictorCpG coef.tsv
 - This file contains three columns: 1) All the predictor CpG ID; 2) Coefficients of elastic net regression; 3) Flag (True/False) indicating CpG presence in the input beta value spreadsheet.
- 2. output1.predictorCpG_found.tsv
 - Contains predictor CpGs and their beta values used for DNA methylation age calculation.
- 3. output1.predictorCpG_missed.tsv
 - Contains missed predictor CpGs from the input beta value spreadsheet.
- 4. output1.DNAm_age.tsv
 - This file contains the sample ID (1st column) and the predicted DNA methylation age (2nd column). If a meta-information file is provided, its variables are also copied into this file (See Example-2).
- 5. output1.coef_plot.pdf
 - Ranked predictor CpG plot. All predictor CpGs were ranked by their coefficients increasingly, then missed CpGs were marked as red circles with a cross, while those used CpGs were marked as grey circles.

6.2. Example-1 15


6. output1.plots.R

• R script to generate the ranked predictor CpG plot described above.

6.3 Example-2

\$ epical Horvath13 Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.tsv
-o output2

In this case, a meta information: Test1_blood_N20_EPICv1_info.tsv file is provided. In addition to the 6 output files described above, another scatter plot will be generated showing the concordance of **chronological age** (X-axis) and **predicted age** (Y-axis).

In the plot, each dot represents a sample. The blue solid line is the linear regression line for all predicted ages. The red dashed line represents the diagonal (dots on this line have identical chronological and predicted ages). Samples above and below the red dashed line indicate age acceleration and deceleration trends, respectively.

Note:

- The sample IDs must match between the beta value spreadsheet and the meta information file.
- The meta information file must have a column named "Age".

6.3. Example-2

SEVEN

HORVATH13 SHRUNK

The Horvath13_shrunk command calculates the DNA methylation using the 110 core CpGs instead of the full 353 CpGs used in the Horvath13 command.

Predictor CpGs	110
Unit	Year
Target Tissue	Pan-tissue or multiple tissue
Target Population	Adult
Method	Elastic Net regression.
Reference	Horvath, et al., Genome biology (2013).

7.1 Usage

```
usage: epical Horvath13_shrunk [-h] [-o out_prefix] [-p PERCENT]
                               [-d DELIMITER] [-f {pdf,png}] [-m meta_file]
                               [-l log_file]
                               [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}]
                               [-r ref_file] [--overwrite] [--debug]
                               Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
                        show this help message and exit
  -h, --help
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
```

generated output files include: "<PREFIX>.DNAm_age.tsv": This file contains the predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format. -p PERCENT, --percent PERCENT The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row

```
min** 9: Fill the missing values with **row max** 10:
Fill the missing values with **external reference** If
10 is specified, an external reference file must be
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--overwrite

If set, over-write existing output files.
--debug

If set, print detailed information for debugging.
```

7.2 Example

\$ epical Horvath13_shrunk Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.
tsv -o horvath13_shrunk

```
2024-01-08 12:25:00 [INFO] The prefix of output files is set to "horvath13_shrunk".
2024-01-08 12:25:00 [INFO] Loading Horvath13_shrunk clock data ...
2024-01-08 12:25:00 [INFO] Clock's name: "Horvath13_shrunk"
2024-01-08 12:25:00 [INFO] Clock was trained from: "Pan-tissue"
2024-01-08 12:25:00 [INFO] Clock's unit: "years"
2024-01-08 12:25:00 [INFO] Number of CpGs used: 110
...
```

This will generate the same type of output files as the Horvath13 command.

7.2. Example 21

EIGHT

HORVATH18

Predictor CpGs	391
Unit	Year
Target Tissue	Multiple tissue (skin & blood)
Target Population	Adult
Method	Elastic Net regression.
Reference	Horvath, et al., Aging (2018).
Alias	skin & blood clock

8.1 Usage

usage: epical Horvath18	<pre>[-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER] [-f {pdf,png}] [-m meta_file] [-l log_file] [impute {-1,0,1,2,3,4,5,6,7,8,9,10}] [-r ref_file] [overwrite] [debug] Input_file</pre>
positional arguments:	
Input_file	The input tabular structure file containing DNA methylation data. This filemust have a header row, which contains the names or labels for samples Thefirst column of this file should contain CpG IDs. The remaining cells in thefile should contain DNA methylation beta values, represented as floating-pointnumbers between 0 and 1. Use a TAB, comma, or any other delimiter to separatethe columns. Use 'NaN' or 'NA' to represent missing values. This file can be a regular text file or compressed file (".gz", ".Z", ".z", ".bz", ".bz2", ".bzip2").
options:	
-h,help	show this help message and exit
-o out_prefix,outp	
	The PREFIX of output files. If no PREFIX is provided, the default prefix "clock_name_out" is used. The generated output files include: " <prefix>.DNAm_age.tsv": This file contains the</prefix>
	(continues on next page)

predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format. -p PERCENT, --percent PERCENT The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed. -d DELIMITER, --delimiter DELIMITER Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator. -f {pdf,png}, --format {pdf,png} Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf". -m meta_file, --metadata meta_file This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-1 log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

 $--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If

```
10 is specified, an external reference file must be provided.

-r ref_file, --ref ref_file

The external reference file contains two columns, separated by either tabs or commas. The first column represents the probe ID, while the second column contains the corresponding beta values.

--overwrite

If set, over-write existing output files.

--debug

If set, print detailed information for debugging.
```

8.2 Example

\$ epical Horvath18 Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.tsv
-o horvath18

```
2024-01-08 02:22:32 [INFO] The prefix of output files is set to "horvath18".

2024-01-08 02:22:32 [INFO] Loading Horvath18 clock data ...

2024-01-08 02:22:32 [INFO] Clock's name: "Horvath18"

2024-01-08 02:22:32 [INFO] Clock was trained from: "fibroblasts, keratinocytes, ..."

2024-01-08 02:22:32 [INFO] Clock's unit: "years"

2024-01-08 02:22:32 [INFO] Number of CpGs used: 391

...
```

This will generate the same type of output files as the Horvath13 command.

8.2. Example 25

NINE

LEVINE

Predictor CpGs	513
Unit	Year
Target Tissue	blood, multi tissues
Target Population	Adult
Method	Elastic Net regression.
Reference	Levine ME, et al., Aging (2018).
Alias	DNAm PhenoAge

9.1 Usage

```
usage: epical Levine [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                     [-f {pdf,png}] [-m meta_file] [-l log_file]
                     [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                     [--debug] [--overwrite]
                     Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format. PERCENT

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

(continues on next page)

28 Chapter 9. Levine

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

9.2 Example

\$ epical Levine Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.tsv -o
Levine

```
2024-01-08 08:54:41 [INFO] The prefix of output files is set to "Levine".
2024-01-08 08:54:41 [INFO] Loading Levine clock data ...
2024-01-08 08:54:41 [INFO] Clock's name: "Levine"
2024-01-08 08:54:41 [INFO] Clock was trained from: "whole blood"
2024-01-08 08:54:41 [INFO] Clock's unit: "years"
2024-01-08 08:54:41 [INFO] Number of CpGs used: 513
...
```

This will generate the same type of output files as the Horvath13 *command.*

9.2. Example 29

30 Chapter 9. Levine

TEN

HANNUM

Predictor CpGs	71
Unit	Year
Target Tissue	whole blood
Target Population	Adult
Method	Elastic Net regression.
Reference	Hannum G et al., Mol Cell (2013).
Alias	

10.1 Usage

```
usage: epical Hannum [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                     [-f {pdf,png}] [-m meta_file] [-l log_file]
                     [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                     [--debug] [--overwrite]
                     Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

10.2 Example

\$ epical Hannum Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.tsv -o
Hannum

```
2024-01-08 09:01:53 [INFO] The prefix of output files is set to "Hannum".
2024-01-08 09:01:53 [INFO] Loading Hannum clock data ...
2024-01-08 09:01:53 [INFO] Clock's name: "Hannum"
2024-01-08 09:01:53 [INFO] Clock was trained from: "whole blood"
2024-01-08 09:01:53 [INFO] Clock's unit: "years"
2024-01-08 09:01:53 [INFO] Number of CpGs used: 71
...
```

ELEVEN

ZHANG_EN

Predictor CpGs	514
Unit	Year
Target Tissue	whole blood, Saliva
Target Population	Adult
Method	Elastic Net regression.
Reference	Zhang Q, et al., Genome Med. (2019).
Alias	

11.1 Usage

```
usage: epical Zhang_EN [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                       [-f {pdf,png}] [-m meta_file] [-l log_file]
                       [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                       [--debug] [--overwrite]
                       Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

11.2 Example

\$ epical Zhang_EN Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.tsv
-o Zhang_EN

```
2024-01-17 09:41:08 [INFO] The prefix of output files is set to "Zhang_EN".
2024-01-17 09:41:08 [INFO] Loading Zhang_EN clock data ...
2024-01-17 09:41:08 [INFO] Clock's name: "Zhang_EN"
2024-01-17 09:41:08 [INFO] Clock was trained from: "blood,saliva"
2024-01-17 09:41:08 [INFO] Clock's unit: "years"
2024-01-17 09:41:08 [INFO] Number of CpGs used: 514
...
```

TWELVE

ZHANG_BLUP

Predictor CpGs	319607
Unit	Year
Target Tissue	whole blood, Saliva
Target Population	Adult
Method	Best Linear Unbiased Prediction (BLUP)
Reference	Zhang Q, et al., Genome Med. (2019).
Alias	

12.1 Usage

```
usage: epical Zhang_BLUP [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                         [-f {pdf,png}] [-m meta_file] [-l log_file]
                         [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                         [--debug] [--overwrite]
                         Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

12.2 Example

\$ epical Zhang_BLUP Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.tsv
-o Zhang_BLUP

```
2024-01-17 09:43:54 [INFO] The prefix of output files is set to "Zhang_BLUP".
2024-01-17 09:43:54 [INFO] Loading Zhang_BLUP clock data ...
2024-01-17 09:43:54 [INFO] Clock's name: "Zhang_BLUP"
2024-01-17 09:43:54 [INFO] Clock was trained from: "blood,saliva"
2024-01-17 09:43:54 [INFO] Clock's unit: "years"
2024-01-17 09:43:54 [INFO] Number of CpGs used: 319607
...
```

THIRTEEN

ALTUMAGE

Predictor CpGs	20318
Unit	Year
Target Tissue	Pan-tissue Pan-tissue
Target Population	Adult
Method	Deep Neural Network (DNN)
Reference	LP de Lima Camillo et al., NPJ Aging. (2022).
Alias	

13.1 Usage

```
usage: epical AltumAge [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                       [-f {pdf,png}] [-m meta_file] [-l log_file]
                       [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                       [--debug] [--overwrite]
                       Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

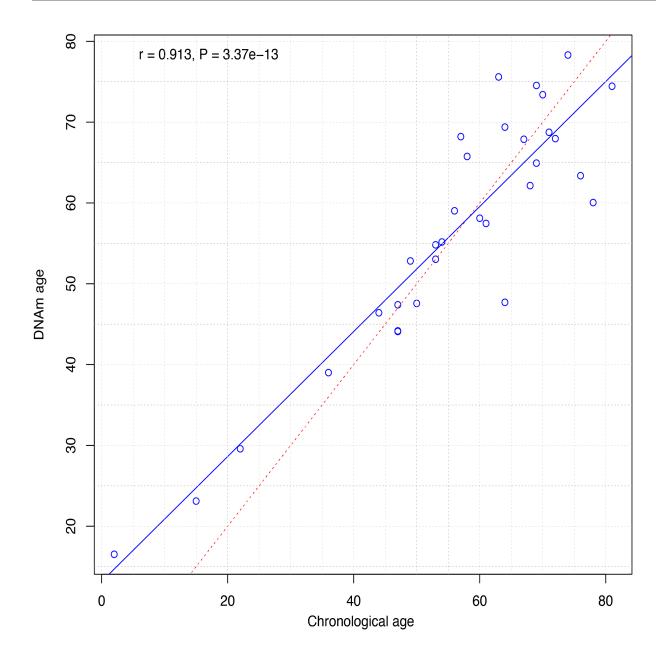
13.2 Example

\$ epical AltumAge Test3_liver_N32_450K_beta.tsv.gz -m Test3_liver_N32_450K_info.tsv -o
AltumAge

```
2024-01-17 21:58:14.840540: I tensorflow/core/platform/cpu_feature_guard.cc:182] This_
TensorFlow binary is optimized to use available CPU instructions in performance-
critical operations.

To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow_
with the appropriate compiler flags.

2024-01-17 09:58:31 [INFO] The prefix of output files is set to "AltumAge".


2024-01-17 09:58:33 [INFO] Loading AltumAge clock data ...

2024-01-17 09:58:33 [INFO] Clock's name: "AltumAge"

2024-01-17 09:58:33 [INFO] Clock was trained from: "Pan-tissue"

2024-01-17 09:58:33 [INFO] Clock's unit: "years"

2024-01-17 09:58:33 [INFO] Number of CpGs used: 20318
...
```


FOURTEEN

CORTICAL

Predictor CpGs	347
Unit	Year
Target Tissue	Brain cortex
Target Population	Adult
Method	Elastic Net regression
Reference	Shireby GL, et al, Brain. (2020).
Alias	DNAmClock-Cortical

14.1 Usage

```
usage: epical Cortical [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                       [-f {pdf,png}] [-m meta_file] [-l log_file]
                       [--impute {-1,0,1,2,3,4,5,6,7,8,9,10}] [-r ref_file]
                       [--overwrite] [--debug]
                       Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

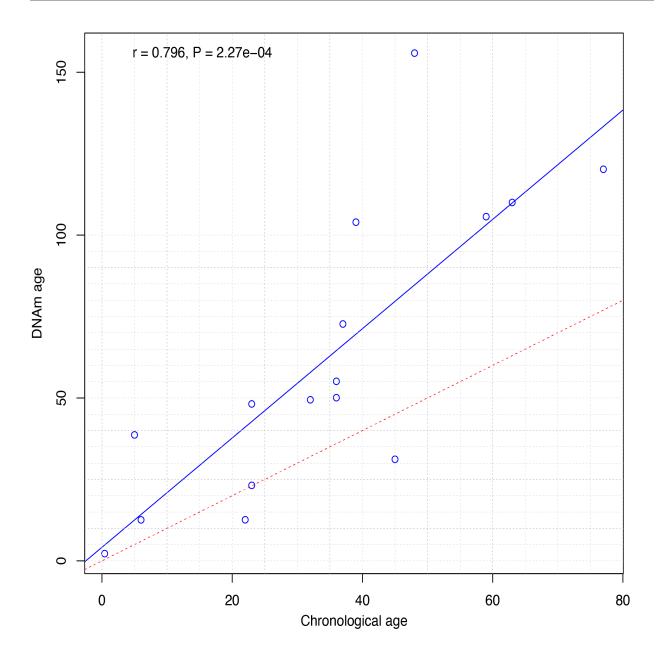
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--overwrite
If set, over-write existing output files.
--debug
If set, print detailed information for debugging.
```

14.2 Example

\$ epical Cortical Test4_brain_N16_EPICv2_beta.tsv.gz -m Test4_brain_N16_EPICv2_info.tsv
-o Cortical

```
2024-01-23 03:18:09 [INFO] The prefix of output files is set to "Cortical".
2024-01-23 03:18:09 [INFO] Loading Cortical clock data ...
2024-01-23 03:18:09 [INFO] Clock's name: "CorticalClock"
2024-01-23 03:18:09 [INFO] Clock was trained from: "brain cortex"
2024-01-23 03:18:09 [INFO] Clock's unit: "years"
2024-01-23 03:18:09 [INFO] Number of CpGs used: 347
...
```


50 Chapter 14. Cortical

FIFTEEN

MEAT

Predictor CpGs	200
Unit	Year
Target Tissue	skeletal muscle
Target Population	Adult
Method	Elastic Net regression
Reference	Voisin S, et al, J Cachexia Sarcopenia Muscle. (2020).
Alias	

15.1 Usage

usage: epical MEAT	<pre>[-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER] [-f {pdf,png}] [-m meta_file] [-l log_file] [impute {-1,0,1,2,3,4,5,6,7,8,9,10}] [-r ref_file] [overwrite] [debug] Input_file</pre>
positional arguments:	
Input_file	The input tabular structure file containing DNA methylation data. This filemust have a header row, which contains the names or labels for samples Thefirst column of this file should contain CpG IDs. The remaining cells in thefile should contain DNA methylation beta values, represented as floating-pointnumbers between 0 and 1. Use a TAB, comma, or any other delimiter to separatethe columns. Use 'NaN' or 'NA' to represent missing values. This file can be a regular text file or compressed file (".gz", ".Z", ".z", ".bz", ".bz2", ".bzip2").
options:	
-h,help	show this help message and exit
-o out_prefix,out	put out_prefix
	The PREFIX of output files. If no PREFIX is provided, the default prefix "clock_name_out" is used. The generated output files include: " <prefix>.DNAm_age.tsv": This file contains the predicted DNAm age. "<prefix>.used_CpGs.tsv": This</prefix></prefix>

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots.
"<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.
PERCENT

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

(continues on next page)

52 Chapter 15. MEAT

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--overwrite
If set, over-write existing output files.
--debug
If set, print detailed information for debugging.
```

15.2 Example

run muscle clock on brain samples...

\$ epical MEAT Test4_brain_N16_EPICv2_beta.tsv.gz -m Test4_brain_N16_EPICv2_info.tsv -o
MEAT

```
2024-04-25 11:40:25 [INFO] The prefix of output files is set to "MEAT".
2024-04-25 11:40:25 [INFO] Loading MEAT clock data ...
2024-04-25 11:40:25 [INFO] Clock's name: "MuscleClock"
2024-04-25 11:40:25 [INFO] Clock was trained from: "muscle"
2024-04-25 11:40:25 [INFO] Clock's unit: "years"
2024-04-25 11:40:25 [INFO] Number of CpGs used: 200
...
```

_static/MEAT.png		
_Static/MEAL.png		
_ , 1 3		

54 Chapter 15. MEAT

SIXTEEN

EPM

16.1 Description

- 1. EPM is a modeling tool, not a epigenetic clock. It can be used to model any phenotypes including aging.
- 2. In contrast to regression bases methods, the EPM does not assume a linear relationship between the epigenetic state and a trait of interest.
- 3. In contrast to other clocks within this package, the EPM algorithm does NOT come with pre-selected CpGs and pre-calculated coefficients. Instead, users are required to provide training data to build the model. In essence, EPM performs CpG selection, model fitting, and prediction simultaneously. For more technical details, refer to the EPM toturial.
- 4. The epical EPM command need two input files: the first being the beta value spreadsheet, and the second being the meta-information file that specifies the training and test samples (see the example below).

Predictor CpGs	Subject to training data
Unit	Subject to training data
Target Tissue	Subject to training data
Target Population	Subject to training data
Method	Fast conditional expectation maximization
Reference	Farrell C, et al, Bioinformatics. (2020).
Alias	EpigeneticPacemaker (EPM)

16.2 Usage

```
usage: epical EPM [-h] [-o out_prefix] [-p PCC] [-n NITER] [-k KFOLD]
                  [-e ETOL] [-d DELIMITER] [-f {pdf,png}] [-l log_file]
                  [-i {-1,0,1,2,3,4,5,6,7,8,9,10}] [-r ref_file] [--debug]
                  Input_file meta_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
```

```
other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
  meta file
                        This file contains the meta information for each
                        sample. This file must have a header row, which
                        contains the names or labels for variables. The 'Age'
                        variable must exist. The 'Designation' variable is
                        used to designate training and testing samples.
options:
  -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "EPM_out" is used. The generated
                        output files include: "<PREFIX>.test_EPM_age.tsv": The
                        predicted EPM age for testing samples.
                        "<PREFIX>.train_EPM_age.tsv": The predicted EPM age
                        for training samples. "<PREFIX>.test_EPM_age.pdf" or
                        "<PREFIX>.test_EPM_age.png: Scatter plot showing the
                        trend between the predicted EPM ages and chronological
                        ages for testing samples. "<PREFIX>.train_EPM_age.pdf"
                        or "<PREFIX>.train_EPM_age.png: Scatter plot showing
                        the trend between the predicted EPM ages and
                        chronological ages for training samples.
                        "<PREFIX>.test_selected_CpGs.tsv": Selected feature
                        CpGs and their beta values for testing samples.
                        "<PREFIX>.train_selected_CpGs.tsv": Selected feature
                        CpGs and their beta values for training samples.
  -p PCC, --pcc PCC
                        Threshold of absolute Pearson correlation coefficient
                        between chronological age and beta values. This cutoff
                        is used to select age-associated CpG sites.
  -n NITER, --niter NITER
                        Iteration times of expectation-maximization.
  -k KFOLD, --kfold KFOLD
                        Folds for cross-valiation.
  -e ETOL, --etol ETOL Error tolerance during model fitting. The acceptable
                        level of deviation between the EPM predicted age and
                        the chronological age.
  -d DELIMITER, --delimiter DELIMITER
                        Separator (usually TAB or comma) used in the input
                        file. If the separator is not provided, the program
                        will automatically detect the separator.
  -f {pdf,png}, --format {pdf,png}
                        Figure format of the output coef plot. It must be
                        "pdf" or "png". The default is "pdf".
  -l log_file, --log log_file
                        This file is used to save the log information. By
                        default, if no file is specified (None), the log
                        information will be printed to the screen.
  -i {-1,0,1,2,3,4,5,6,7,8,9,10}, --impute {-1,0,1,2,3,4,5,6,7,8,9,10}
                        The imputation method code must be one of the 12
                                                                            (continues on next page)
```

56 Chapter 16. EPM

```
digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                      10). The interpretations are: -1: Remove CpGs with any
                      missing values. 0: Fill all missing values with '0.0'.
                      1: Fill all missing values with '1.0'. 2: Fill the
                      missing values with **column mean** 3: Fill the
                      missing values with **column median** 4: Fill the
                      missing values with **column min** 5: Fill the missing
                      values with **column max** 6: Fill the missing values
                      with **row mean** 7: Fill the missing values with
                      **row median** 8: Fill the missing values with **row
                      min** 9: Fill the missing values with **row max** 10:
                      Fill the missing values with **external reference** If
                      10 is specified, an external reference file must be
                      provided.
-r ref_file, --ref ref_file
                      The external reference file contains two columns,
                      separated by either tabs or commas. The first column
                      represents the probe ID, while the second column
                      contains the corresponding beta values.
                      If set, print detailed information for debugging.
--debug
```

16.3 Example

Prepare the meta-information file. In this instance, the 80 samples were shuffled, and subsequently, 60 (75%) samples were chosen as "training" samples, while the remaining 20 (25%) samples were designated as "testing" samples.

Note: The meta-information file must have two columns named as "Age" and "Designation".

\$ cat Test2_blood_N80_450K_info2.tsv

```
ID Sex Age Designation
I304 F 37 train
I080 M 12 train
I513 M 41 train
I118 M 10 train
I063 F 13 train
I550 M 19 train
I097 M 44
          train
I282 M 50 train
I257 M 48 train
I015 M 24 train
I302 F 43 train
I290 M 14 train
I224 F 37 train
I057 F 44 train
I255 F 17 train
I572 F 41 train
I028 F 13 train
I215 F 16 train
```

(continues on next page)

		(continued from previous page)
I007 M 20	train	
I537 F 21	train	
I060 F 20	train	
I481 F 56	train	
I037 M 20	train	
I251 F 48	train	
I163 F 11	train	
I589 M 59	train	
I109 M 49	train	
I006 M 53	train	
I167 M 53	train	
I004 F 11	train	
I148 M 52	train	
I482 F 24	train	
I270 F 17	train	
I074 F 12	train	
I159 M 40	train	
I478 M 39	train	
I286 F 17	train	
I127 F 15	train	
I072 M 12	train	
I035 F 19	train	
I228 F 55	train	
I020 M 11	train	
I292 F 14	train	
I114 M 47 I229 M 21	train	
1349 M 43	train	
I173 F 47	train train	
I032 M 13	train	
I013 M 10	train	
I495 M 46	train	
I107 M 18	train	
I213 F 16	train	
I190 F 45	train	
I058 M 19	train	
I104 F 10		
I211 M 16	train	
I135 M 39	train	
I091 F 40	train	
I311 F 58	train	
I152 F 42	train	
I280 F 14	test	
I182 M 51	test	
I092 M 15	test	
I391 F 52	test	
I458 M 54	test	
I279 M 55	test	
I066 M 15	test	
I077 F 42	test	
I234 F 51	test	
I024 F 49	test	
		(continues on next page)

(continues on next page)

58 Chapter 16. EPM

```
I603 F 18 test
I379 M 57 test
I418 F 46 test
I268 M 38 test
I338 M 18 test
I034 F 38 test
I230 F 50 test
I412 M 60 test
I188 M 45 test
I274 F 54 test
```

\$ epical EPM Test2_blood_N80_450K_beta.tsv.gz Test2_blood_N80_450K_info.tsv -o EPM

```
2024-01-23 07:26:09 [INFO] The prefix of output files is set to "EPM".
                           Read input beta file: "Test2_blood_N80_450K_beta.tsv.gz"
2024-01-23 07:26:09 [INFO]
2024-01-23 07:26:39 [INFO] Fill missing values with ZEROs ...
                           Input file: "Test2_blood_N80_450K_beta.tsv.gz", Number of_
2024-01-23 07:26:39 [INFO]
→CpGs: 478313, Number of samples: 80
                           Read meta information file: "Test2_blood_N80_450K_info2.tsv"
2024-01-23 07:26:39 [INFO]
2024-01-23 07:26:39 [INFO] Split samples into training and testing sets ...
2024-01-23 07:26:39 [INFO] 60 samples are included in training set: I304, I080, I513,
→I118, I063 ...
2024-01-23 07:26:39 [INFO] 20 samples are included in testing set: I280, I182, I092,
→I391, I458 ...
2024-01-23 07:26:39 [INFO] Calculate pearson correlation coefficients ...
2024-01-23 07:26:40 [INFO]
                           100 CpG sites are selected: cg00103778, cg00303541,_
→cg00329615, cg00439658, cg00462994 ...
2024-01-23 07:26:40 [INFO] Save beta values of selected CpGs to "EPM.train_selected_
→CpGs.tsv"
2024-01-23 07:26:40 [INFO] Save beta values of selected CpGs to "EPM.test_selected_CpGs.
-tsv"
2024-01-23 07:26:40 [INFO] Initialize the EPM model ...
2024-01-23 07:26:40 [INFO] Fit the EPM model using training data ...
2024-01-23 07:26:40 [INFO]
                           Get training sample EPM predictions (when left out) ...
2024-01-23 07:26:40 [INFO]
                           Save predicted EPM ages of traning samples to "EPM.train_EPM_
⊶age.tsv"
2024-01-23 07:26:40 [INFO] Predict testing samples ...
2024-01-23 07:26:40 [INFO] Save predicted EPM age of testing samples to "EPM.test_EPM_
⇒age.tsv"
2024-01-23 07:26:40 [INFO] Generate scatter plot of test samples and save to "EPM.test_
→EPM_age.pdf"
```

16.4 Ouput

A total of six files were generated.

1. EPM.train_selected_CpGs.tsv

Selected predictor CpGs and their beta values from training samples.

2. EPM.train_EPM_age.tsv

Predicted age for training samples. Please note, the "cross validated version of the EPM" is implemented here, so **prediction is made for each sample when the sample is left out of model fitting**.

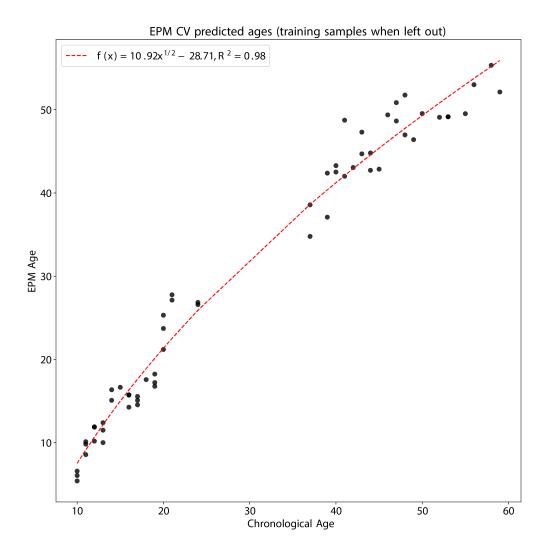
3. EPM.train_EPM_age.pdf

Scatter plot showing the concordance betweent "Chronological age" and "predicted age" (for training samples).

4. EPM.test_selected_CpGs.tsv

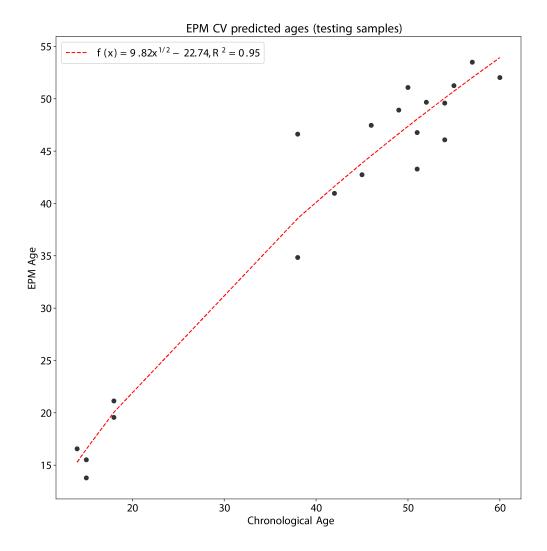
Selected predictor CpGs and their beta values from testing samples.

5. EPM.test_EPM_age.tsv


Predicted age for testing samples.

6. EPM.test_EPM_age.pdf

Scatter plot showing the concordance betweent "Chronological age" and "predicted age" (for testing samples).


EPM_train.png

60 Chapter 16. EPM

EPM_test.png

16.4. Ouput 61

62 Chapter 16. EPM

SEVENTEEN

LU DNAMTL

Predictor CpGs	140
Unit	Kb
Target Tissue	Blood
Target Population	Adult
Method	Elastic Net regression
Reference	Lu, Ake, et al., Aging. (2019).
Alias	

17.1 Usage

```
usage: epical Lu_DNAmTL [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                        [-f {pdf,png}] [-m meta_file] [-l log_file]
                        [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                        [--debug] [--overwrite]
                        Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

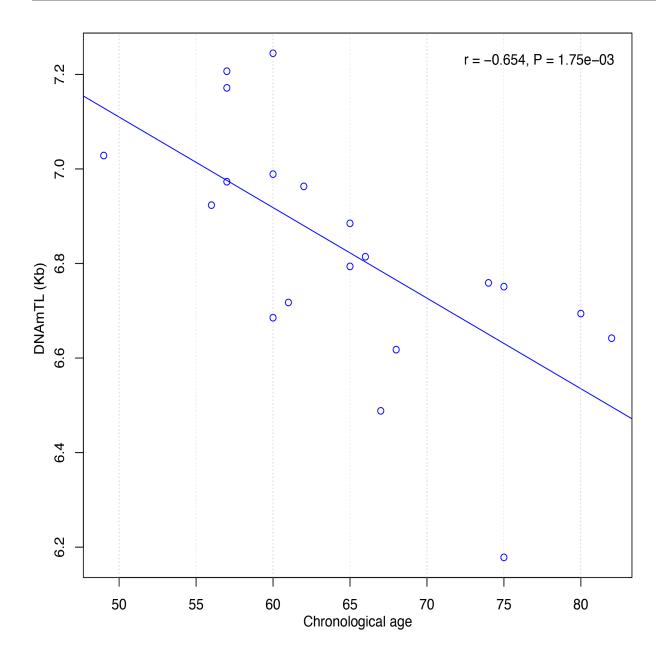
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values w

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
Print detailed information for debugging.
--overwrite
If set, print detailed information for debugging.
```

17.2 Example

\$ epical Lu_DNAmTL Test1_blood_N20_EPICv1_beta.tsv.gz -m Test1_blood_N20_EPICv1_info.tsv
-o Lu_DNAmTL

```
2024-01-17 10:01:55 [INFO] The prefix of output files is set to "Lu_DNAmTL".
2024-01-17 10:01:55 [INFO] Loading Lu_DNAmTL clock data ...
2024-01-17 10:01:55 [INFO] Clock's name: "Lu_DNAmTL"
2024-01-17 10:01:55 [INFO] Clock was trained from: "blood"
2024-01-17 10:01:55 [INFO] Clock's unit: "Kilobase"
2024-01-17 10:01:55 [INFO] Number of CpGs used: 140
...
```


EIGHTEEN

PEDWU

Predictor CpGs	111
Unit	Year
Target Tissue	Blood, Saliva
Target Population	Children (9 to 17)
Method	Elastic Net regression
Reference	Wu X, et al., Aging. (2019).
Alias	

18.1 Usage

```
usage: epical Ped_Wu [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                     [-f {pdf,png}] [-m meta_file] [-l log_file]
                     [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                     [--debug] [--overwrite]
                     Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots.
"<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.
PERCENT

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

18.2 Example

\$ epical Ped_Wu Test2_blood_N80_450K_beta.tsv.gz -m Test2_blood_N80_450K_info.tsv -o
PedWu_out

```
2024-01-22 10:08:01 [INFO] The prefix of output files is set to "PedWu_out".
2024-01-22 10:08:01 [INFO] Loading Ped_Wu clock data ...
2024-01-22 10:08:01 [INFO] Clock's name: "Wu_Children"
2024-01-22 10:08:01 [INFO] Clock was trained from: "blood,saliva"
2024-01-22 10:08:01 [INFO] Clock's unit: "years"
2024-01-22 10:08:01 [INFO] Number of CpGs used: 111
```

70 Chapter 18. PedWu

NINETEEN

PEDBE

Predictor CpGs	94
Unit	Year
Target Tissue	Buccal cells
Target Population	Children (0 to 20)
Method	Elastic Net regression
Reference	McEwen LM, et al., Proc Natl Acad Sci U S A. (2020).
Alias	

19.1 Usage

```
[-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
usage: epical PedBE
                     [-f {pdf,png}] [-m meta_file] [-l log_file]
                     [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                     [--debug] [--overwrite]
                     Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

19.2 Example

\$ epical PedBE Test2_blood_N80_450K_beta.tsv.gz -m Test2_blood_N80_450K_info.tsv -o
PedBE_out

```
2024-01-22 11:33:09 [INFO] The prefix of output files is set to "PedBE_out".
2024-01-22 11:33:09 [INFO] Loading PedBE clock data ...
2024-01-22 11:33:09 [INFO] Clock's name: "McEwen_PedBE"
2024-01-22 11:33:09 [INFO] Clock was trained from: "buccal cells"
2024-01-22 11:33:09 [INFO] Clock's unit: "years"
2024-01-22 11:33:09 [INFO] Number of CpGs used: 94
...
```

TWENTY

GA BOHLIN

Predictor CpGs	96
Unit	Day
Target Tissue	Cord blood
Target Population	New born (Gestational age)
Method	Lasso regression
Reference	Bohlin J, et al., Genome Biol. (2016).
Alias	

20.1 Usage

```
usage: epical GA_Bohlin [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                        [-f {pdf,png}] [-m meta_file] [-l mog_file]
                        [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                        [--debug] [--overwrite]
                        Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-1 mog_file, --log mog_file

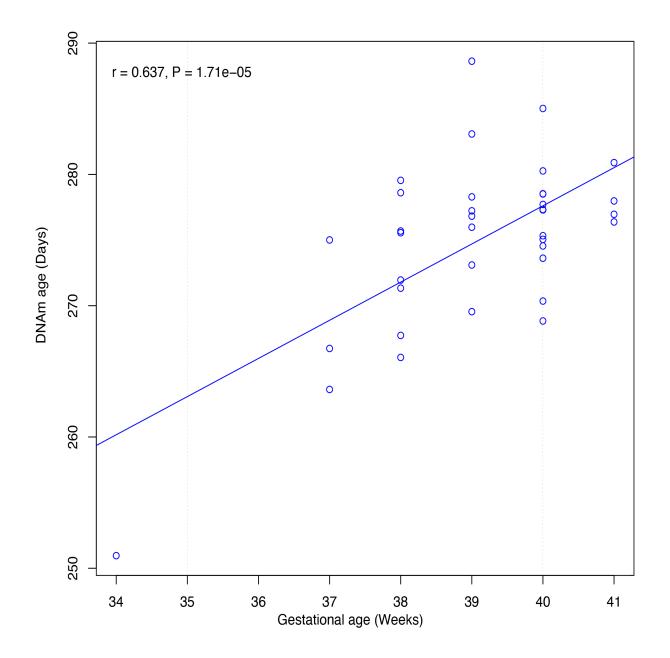
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

20.2 Example

\$ epical GA_Bohlin Test5_CordBlood_N38_450K_beta.tsv.gz -m Test5_CordBlood_N38_450K_info.
tsv -o GA_Bohlin --overwrite

```
2024-01-22 09:49:43 [INFO] The prefix of output files is set to "GA_Bohlin".
2024-01-22 09:49:43 [WARNING] Over write existing files with prefix: GA_Bohlin
2024-01-22 09:49:43 [INFO] Loading GA_Bohlin clock data ...
2024-01-22 09:49:43 [INFO] Clock's name: "Bohlin_gestational"
2024-01-22 09:49:43 [INFO] Clock was trained from: "cord blood"
2024-01-22 09:49:43 [INFO] Clock's unit: "days"
2024-01-22 09:49:43 [INFO] Number of CpGs used: 96
...
```


TWENTYONE

GA_HAFTORN

Predictor CpGs	176
Unit	Day
Target Tissue	Cord blood
Target Population	New born (Gestational age)
Method	Lasso regression
Reference	Haftorn KL., et al., Clinical epigenetics (2021).
Alias	

21.1 Usage

```
usage: epical GA_Haftorn [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                         [-f {pdf,png}] [-m meta_file] [-l mog_file]
                         [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                         [--debug] [--overwrite]
                         Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l mog_file, --log mog_file

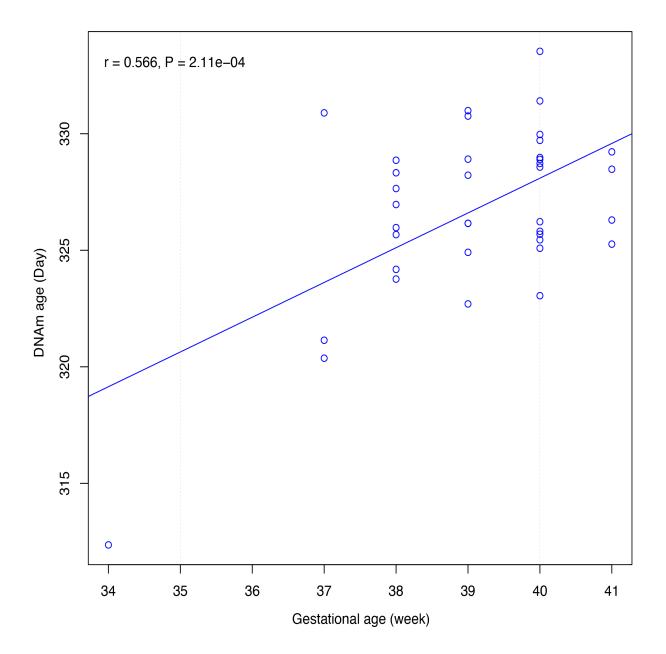
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values w

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

21.2 Example

\$ epical GA_Haftorn Test5_CordBlood_N38_450K_beta.tsv.gz -m Test5_CordBlood_N38_450K_info.
tsv -o GA_Haftorn --overwrite -p 0.51

```
2024-01-23 10:56:02 [INFO] The prefix of output files is set to "GA_Haftorn".
2024-01-23 10:56:02 [WARNING] Over write existing files with prefix: GA_Haftorn
2024-01-23 10:56:02 [INFO] Loading GA_Haftorn clock data ...
2024-01-23 10:56:02 [INFO] Clock's name: "Haftorn_gestational"
2024-01-23 10:56:02 [INFO] Clock was trained from: "cord blood"
2024-01-23 10:56:02 [INFO] Clock's unit: "weeks"
2024-01-23 10:56:02 [INFO] Number of CpGs used: 176
...
```


TWENTYTWO

GA KNIGHT

Predictor CpGs	148
Unit	Week
Target Tissue	Neonatal Cord blood
Target Population	New born (Gestational age)
Method	Elastic Net regression
Reference	Knight AK, et al., Genome Biol. (2016).
Alias	

22.1 Usage

```
usage: epical GA_Knight [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                        [-f {pdf,png}] [-m meta_file] [-l log_file]
                        [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                        [--debug] [--overwrite]
                        Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

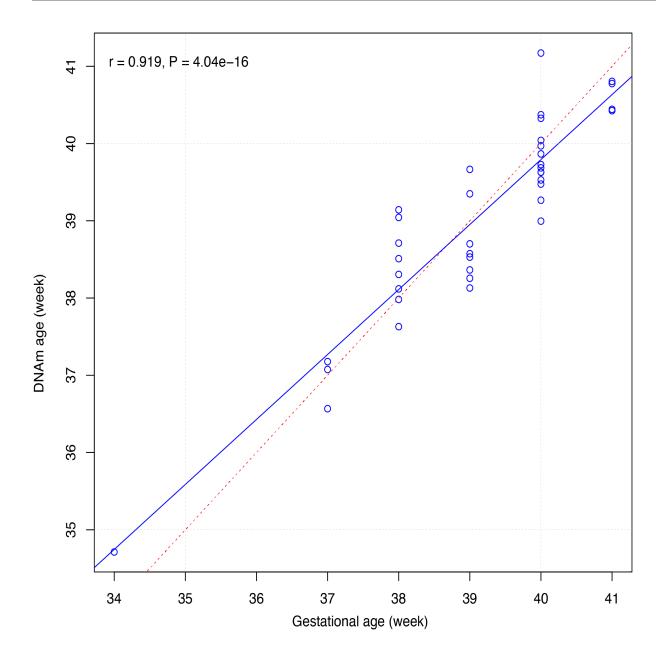
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

22.2 Example

\$ epical GA_Knight Test5_CordBlood_N38_450K_beta.tsv.gz -m Test5_CordBlood_N38_450K_info.
tsv -o GA_Knight --overwrite

```
2024-01-22 09:49:43 [INFO] The prefix of output files is set to "GA_Bohlin".
2024-01-22 09:49:43 [WARNING] Over write existing files with prefix: GA_Bohlin
2024-01-22 09:49:43 [INFO] Loading GA_Bohlin clock data ...
2024-01-22 09:49:43 [INFO] Clock's name: "Bohlin_gestational"
2024-01-22 09:49:43 [INFO] Clock was trained from: "cord blood"
2024-01-22 09:49:43 [INFO] Clock's unit: "days"
2024-01-22 09:49:43 [INFO] Number of CpGs used: 96
...
```


TWENTYTHREE

GA MAYNE

Predictor CpGs	62
Unit	Week
Target Tissue	Placental
Target Population	New born (Gestational age)
Method	Elastic Net regression
Reference	Mayne BT, et al, Epigenomics. (2017).
Alias	

23.1 Usage

```
[-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
usage: epical GA_Mayne
                        [-f {pdf,png}] [-m meta_file] [-l log_file]
                        [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                        [--debug] [--overwrite]
                        Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

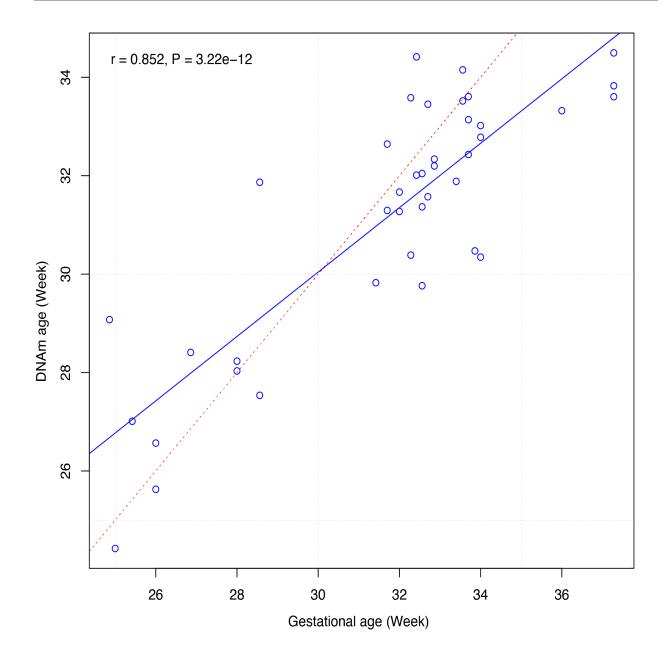
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

23.2 Example

\$ epical GA_Mayne Test6_Placentas_N40_450K_beta.tsv.gz -m Test6_Placentas_N40_450K_info.
tsv -o GA_Mayne --overwrite

```
2024-01-23 11:44:31 [INFO] The prefix of output files is set to "GA_Mayne".
2024-01-23 11:44:31 [WARNING] Over write existing files with prefix: GA_Mayne
2024-01-23 11:44:31 [INFO] Loading GA_Mayne clock data ...
2024-01-23 11:44:31 [INFO] Clock's name: "Mayne_gestational"
2024-01-23 11:44:31 [INFO] Clock was trained from: "placental"
2024-01-23 11:44:31 [INFO] Clock's unit: "weeks"
2024-01-23 11:44:31 [INFO] Number of CpGs used: 62
...
```


TWENTYFOUR

GA LEE CPC

Predictor CpGs	1125
Unit	Week
Target Tissue	Placental
Target Population	New born (Gestational age)
Method	Elastic Net regression
Reference	Lee Y, et al, Aging. (2019).
Alias	A control placental clock (CPC)

24.1 Usage

```
usage: epical GA_Lee_CPC [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                         [-f {pdf,png}] [-m meta_file] [-l log_file]
                         [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                         [--debug] [--overwrite]
                         Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

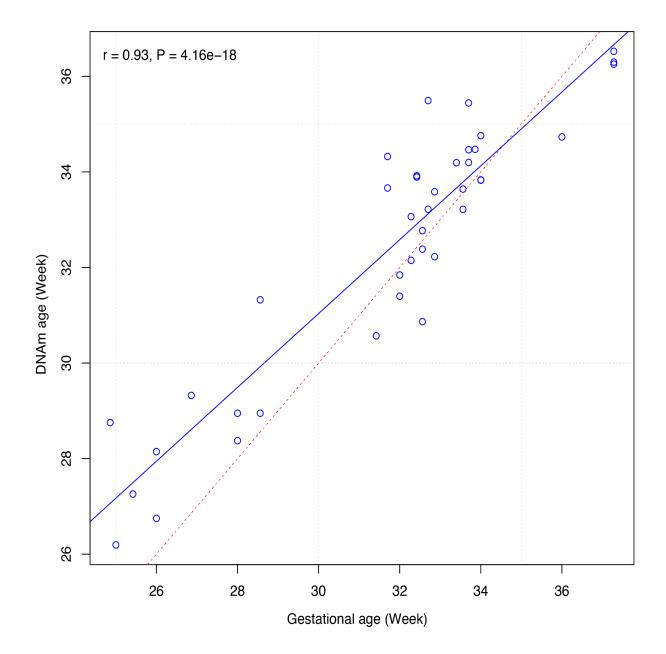
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

24.2 Example

\$ epical GA_Lee_CPC Test6_Placentas_N40_450K_beta.tsv.gz -m Test6_Placentas_N40_450K_info.
tsv -o GA_Lee_CPC

```
2024-01-23 12:07:03 [INFO] The prefix of output files is set to "GA_Lee_CPC".
2024-01-23 12:07:03 [INFO] Loading GA_Lee_CPC clock data ...
2024-01-23 12:07:03 [INFO] Clock's name: "Lee_gestational_CPC"
2024-01-23 12:07:03 [INFO] Clock was trained from: "placental"
2024-01-23 12:07:03 [INFO] Clock's unit: "weeks"
2024-01-23 12:07:03 [INFO] Number of CpGs used: 1125
...
```


TWENTYFIVE

GA LEE RPC

Predictor CpGs	1125
Unit	Week
Target Tissue	Placental
Target Population	New born (Gestational age)
Method	Elastic Net regression
Reference	Lee Y, et al, Aging. (2019).
Alias	A robust placental clock (RPC)

25.1 Usage

```
usage: epical GA_Lee_RPC [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                         [-f {pdf,png}] [-m meta_file] [-l log_file]
                         [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                         [--debug] [--overwrite]
                         Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

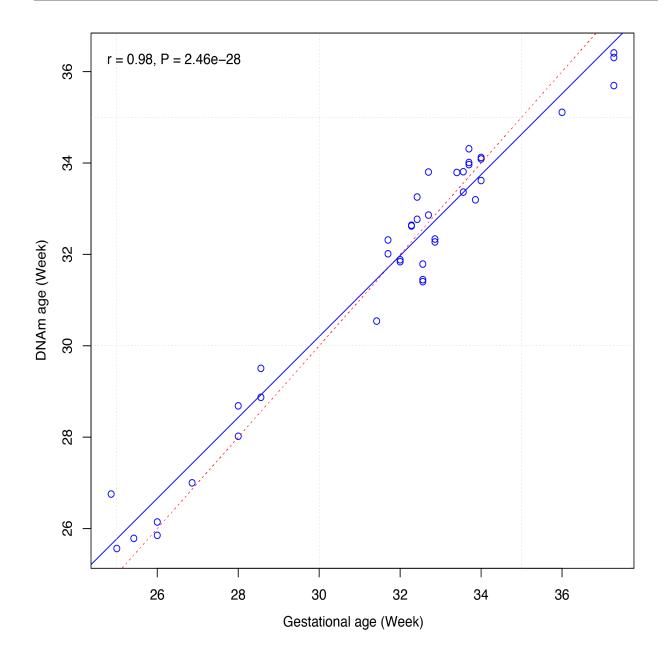
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

25.2 Example

\$ epical GA_Lee_RPC Test6_Placentas_N40_450K_beta.tsv.gz -m Test6_Placentas_N40_450K_info.
tsv -o GA_Lee_RPC

```
2024-01-23 12:07:03 [INFO] The prefix of output files is set to "GA_Lee_RPC".
2024-01-23 12:07:03 [INFO] Loading GA_Lee_CPC clock data ...
2024-01-23 12:07:03 [INFO] Clock's name: "Lee_gestational_RPC"
2024-01-23 12:07:03 [INFO] Clock was trained from: "placental"
2024-01-23 12:07:03 [INFO] Clock's unit: "weeks"
2024-01-23 12:07:03 [INFO] Number of CpGs used: 1125
...
```


TWENTYSIX

GA LEE RRPC

Predictor CpGs	1125
Unit	Week
Target Tissue	Placental
Target Population	New born (Gestational age)
Method	Elastic Net regression
Reference	Lee Y, et al, Aging. (2019).
Alias	refined robust placental clock, rRPC

26.1 Usage

```
usage: epical GA_Lee_rRPC [-h] [-o out_prefix] [-p PERCENT] [-d DELIMITER]
                          [-f {pdf,png}] [-m meta_file] [-l log_file]
                          [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                          [--debug] [--overwrite]
                          Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots.
"<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format.

-p PERCENT, --percent PERCENT

The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed.

-d DELIMITER, --delimiter DELIMITER

Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator.

-f {pdf,png}, --format {pdf,png}

Figure format of the output coef plot. It must be "pdf" or "png". The default is "pdf".

-m meta_file, --metadata meta_file

This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided.

-l log_file, --log log_file

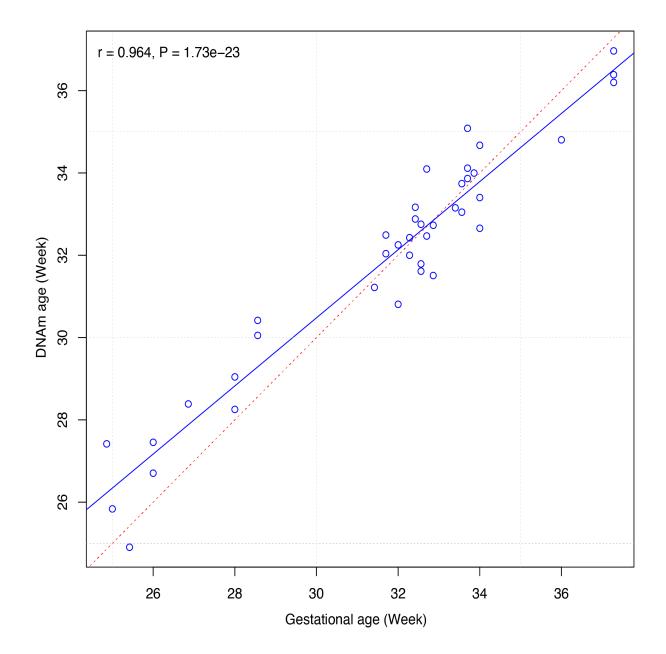
This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen.

--impute $\{-1,0,1,2,3,4,5,6,7,8,9,10\}$

The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with **row median** 8: Fill the missing values with **row min** 9: Fill the missing values with **row max** 10: Fill the missing values with **external reference** If 10 is specified, an external reference file must be

```
provided.

-r ref_file, --ref ref_file


The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug
If set, print detailed information for debugging.
--overwrite
If set, over-write existing output files.
```

26.2 Example

\$ epical GA_Lee_rRPC Test6_Placentas_N40_450K_beta.tsv.gz -m Test6_Placentas_N40_450K_info.
tsv -o GA_Lee_rRPC

```
2024-01-23 12:07:03 [INFO] The prefix of output files is set to "GA_Lee_RPC".
2024-01-23 12:07:03 [INFO] Loading GA_Lee_CPC clock data ...
2024-01-23 12:07:03 [INFO] Clock's name: "Lee_gestational_RPC"
2024-01-23 12:07:03 [INFO] Clock was trained from: "placental"
2024-01-23 12:07:03 [INFO] Clock's unit: "weeks"
2024-01-23 12:07:03 [INFO] Number of CpGs used: 1125
...
```


TWENTYSEVEN

WLMT

Predictor CpGs	435
Unit	Day
Target Tissue	Multi-tissue
Target Population	Mouse (whole life)
Method	Elastic Net regression
Reference	Meer MV, et al, Elife. (2018).
Alias	Mouse whole life multiple tissue clock

27.1 Usage

```
usage: epical WLMT [-h] [-o out_prefix] [-g {mm10,mm39}] [-p PERCENT]
                   [-d DELIMITER] [-f {pdf,png}] [-m meta_file] [-l log_file]
                   [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                   [--debug] [--overwrite]
                   Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

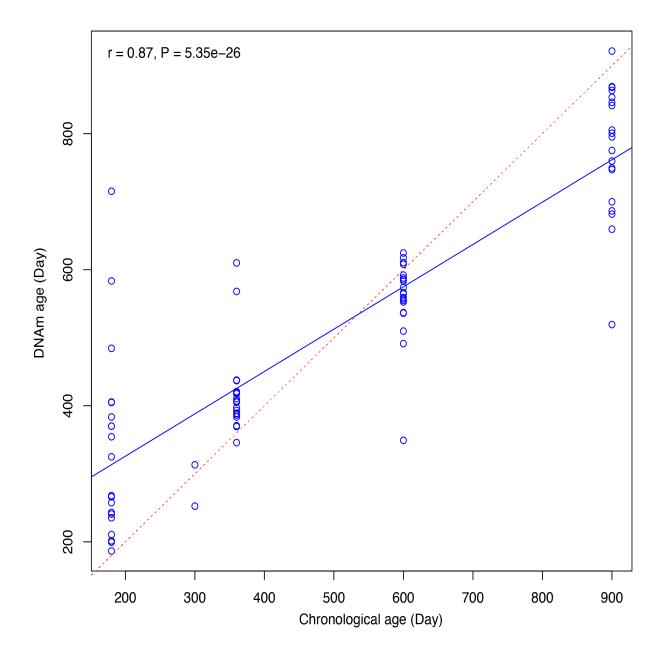
file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format. $-g \{mm10, mm39\}, --genome \{mm10, mm39\}$ The reference genome for Mouse (Mus musculus) used for RRBS or WGBS reads alignment. Must be 'mm10' or 'mm39'. default is 'mm10'. -p PERCENT, --percent PERCENT The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed. -d DELIMITER, --delimiter DELIMITER Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator. -f {pdf,png}, --format {pdf,png} The output plot format must be either 'pdf' or 'png'. The default format is 'pdf'.". -m meta_file, --metadata meta_file This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided. -l log_file, --log log_file This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen. $--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}$ The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with

```
**row median** 8: Fill the missing values with **row
min** 9: Fill the missing values with **row max** 10:
Fill the missing values with **external reference** If
10 is specified, an external reference file must be
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug


If set, print detailed information for debugging.
--overwrite

If set, over-write existing output files.
```

27.2 Example

\$ epical WLMT Test7_mouse_N81_RRBS_beta.tsv -m Test7_mouse_N81_RRBS_info.tsv -g mm10 -o
WLMT_out

```
2024-04-11 01:47:13 [INFO] The prefix of output files is set to "WLMT_out".
2024-04-11 01:47:13 [INFO] Loading WLMT clock data ...
2024-04-11 01:47:13 [INFO] Clock's name: "WLMT_mm10"
2024-04-11 01:47:13 [INFO] Clock was trained from: "Pan-tissue"
2024-04-11 01:47:13 [INFO] Clock's unit: "week"
2024-04-11 01:47:13 [INFO] Number of CpGs used: 435
...
```


106 Chapter 27. WLMT

TWENTYEIGHT

YOMT

Predictor CpGs	329
Unit	Day
Target Tissue	Multi-tissue
Target Population	Mouse (young age up to 10 month)
Method	Elastic Net regression
Reference	Stubbs TM, Genome biology (2017).
Alias	

28.1 Usage

```
usage: epical YOMT [-h] [-o out_prefix] [-g {mm10,mm39}] [-p PERCENT]
                   [-d DELIMITER] [-f {pdf,png}] [-m meta_file] [-l log_file]
                   [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                   [--debug] [--overwrite]
                   Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format. $-g \{mm10, mm39\}, --genome \{mm10, mm39\}$ The reference genome for Mouse (Mus musculus) used for RRBS or WGBS reads alignment. Must be 'mm10' or 'mm39'. default is 'mm10'. -p PERCENT, --percent PERCENT The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed. -d DELIMITER, --delimiter DELIMITER Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator. -f {pdf,png}, --format {pdf,png} The output plot format must be either 'pdf' or 'png'. The default format is 'pdf'.". -m meta_file, --metadata meta_file This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided. -l log_file, --log log_file This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen. $--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}$ The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with

```
**row median** 8: Fill the missing values with **row
min** 9: Fill the missing values with **row max** 10:
Fill the missing values with **external reference** If
10 is specified, an external reference file must be
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug

If set, print detailed information for debugging.
--overwrite

If set, over-write existing output files.
```

28.2 Example

\$ epical YOMT Test7_mouse_N81_RRBS_beta.tsv -g mm10 -o YOMT_out

```
2024-04-12 11:26:33 [INFO] The prefix of output files is set to "YOMT_out".
2024-04-12 11:26:33 [WARNING] Over write existing files with prefix: YOMT_out
2024-04-12 11:26:33 [INFO] Loading YOMT clock data ...
2024-04-12 11:26:33 [INFO] Clock's name: "YOMT_mm10"
2024-04-12 11:26:33 [INFO] Clock was trained from: "Multi-tissue"
2024-04-12 11:26:33 [INFO] Clock's unit: "week"
2024-04-12 11:26:33 [INFO] Number of CpGs used: 329
...
```

110 Chapter 28. YOMT

TWENTYNINE

MMLIVER

Predictor CpGs	148
Unit	Day
Target Tissue	liver
Target Population	Mouse
Method	Elastic Net regression
Reference	Wang T, Genome biology (2017).
Alias	

29.1 Usage

```
usage: epical mmLiver [-h] [-o out_prefix] [-g {mm10,mm39}] [-p PERCENT]
                      [-d DELIMITER] [-f {pdf,png}] [-m meta_file] [-l log_file]
                      [--impute {-1,0,1,2,3,4,5,6,7,8,9,10}] [-r ref_file]
                      [--debug] [--overwrite]
                      Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format. $-g \{mm10, mm39\}, --genome \{mm10, mm39\}$ The reference genome for Mouse (Mus musculus) used for RRBS or WGBS reads alignment. Must be 'mm10' or 'mm39'. default is 'mm10'. -p PERCENT, --percent PERCENT The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed. -d DELIMITER, --delimiter DELIMITER Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator. -f {pdf,png}, --format {pdf,png} The output plot format must be either 'pdf' or 'png'. The default format is 'pdf'.". -m meta_file, --metadata meta_file This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided. -l log_file, --log log_file This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen. $--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}$ The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the

missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with

```
**row median** 8: Fill the missing values with **row
min** 9: Fill the missing values with **row max** 10:
Fill the missing values with **external reference** If
10 is specified, an external reference file must be
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug

If set, print detailed information for debugging.
--overwrite

If set, over-write existing output files.
```

29.2 Example

\$ epical mmLiver Test7_mouse_N81_RRBS_beta.tsv -g mm10 -o mmLiver_out

```
2024-04-12 12:11:47 [INFO] The prefix of output files is set to "mmLiver_out".
2024-04-12 12:11:47 [INFO] Loading mmLiver clock data ...
2024-04-12 12:11:47 [INFO] Clock's name: "liver_mm10"
2024-04-12 12:11:47 [INFO] Clock was trained from: "Liver"
2024-04-12 12:11:47 [INFO] Clock's unit: "day"
2024-04-12 12:11:47 [INFO] Number of CpGs used: 148
...
```

THIRTY

MMBLOOD

Predictor CpGs	90
Unit	Day
Target Tissue	Blood
Target Population	Mouse
Method	Elastic Net regression
Reference	Petkovich DA, Cell Metab. (2017).
Alias	

30.1 Usage

```
usage: epical mmBlood [-h] [-o out_prefix] [-g {mm10,mm39}] [-p PERCENT]
                       [-d DELIMITER] [-f {pdf,png}] [-m meta_file] [-l log_file]
                       [--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}] [-r ref_file]
                       [--debug] [--overwrite]
                       Input_file
positional arguments:
  Input_file
                        The input tabular structure file containing DNA
                        methylation data. This filemust have a header row,
                        which contains the names or labels for samples
                        Thefirst column of this file should contain CpG IDs.
                        The remaining cells in thefile should contain DNA
                        methylation beta values, represented as floating-
                        pointnumbers between 0 and 1. Use a TAB, comma, or any
                        other delimiter to separatethe columns. Use 'NaN' or
                        'NA' to represent missing values. This file can be a
                        regular text file or compressed file (".gz", ".Z",
                        ".z", ".bz", ".bz2", ".bzip2").
options:
 -h, --help
                        show this help message and exit
  -o out_prefix, --output out_prefix
                        The PREFIX of output files. If no PREFIX is provided,
                        the default prefix "clock_name_out" is used. The
                        generated output files include:
                        "<PREFIX>.DNAm_age.tsv": This file contains the
                        predicted DNAm age. "<PREFIX>.used_CpGs.tsv": This
```

file lists the CpGs that were used to calculate the DNAm age. "<PREFIX>.missed_CpGs.txt": This file provides a list of clock CpGs that were missed or excluded from the input file. "<PREFIX>.coef.tsv": This file contains a list of clock CpGs along with their coefficients. The last column indicates whether the CpG is included in the calculation. "<PREFIX>.plots.R": This file is an R script used to generate visualization plots. "<PREFIX>.coef_plot.pdf": This file is the coefficient plot in either PDF or PNG format. $-g \{mm10, mm39\}, --genome \{mm10, mm39\}$ The reference genome for Mouse (Mus musculus) used for RRBS or WGBS reads alignment. Must be 'mm10' or 'mm39'. default is 'mm10'. -p PERCENT, --percent PERCENT The maximum allowable percentage of missing CpGs. Set to 0.2 (20%) by default, which means that if more than 20% of the clock CpGs are missing, the estimation of DNAm age cannot be performed. -d DELIMITER, --delimiter DELIMITER Separator (usually TAB or comma) used in the input file. If the separator is not provided, the program will automatically detect the separator. -f {pdf,png}, --format {pdf,png} The output plot format must be either 'pdf' or 'png'. The default format is 'pdf'.". -m meta_file, --metadata meta_file This file contains the meta information for each sample. This file must have a header row, which contains the names or labels for variables (such as "Sex", "Age"). If the header row includes an "Age" column, a scatter plot will be generated to display the correlation between chronological age and predicted DNAm age. The first column of this file should contain sample IDs. The default value is None, indicating that no meta information file is provided. -l log_file, --log log_file This file is used to save the log information. By default, if no file is specified (None), the log information will be printed to the screen. $--impute \{-1,0,1,2,3,4,5,6,7,8,9,10\}$ The imputation method code must be one of the 12 digits including (-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The interpretations are: -1: Remove CpGs with any missing values. 0: Fill all missing values with '0.0'. 1: Fill all missing values with '1.0'. 2: Fill the missing values with **column mean** 3: Fill the missing values with **column median** 4: Fill the missing values with **column min** 5: Fill the missing values with **column max** 6: Fill the missing values with **row mean** 7: Fill the missing values with

```
**row median** 8: Fill the missing values with **row
min** 9: Fill the missing values with **row max** 10:
Fill the missing values with **external reference** If
10 is specified, an external reference file must be
provided.

-r ref_file, --ref ref_file

The external reference file contains two columns,
separated by either tabs or commas. The first column
represents the probe ID, while the second column
contains the corresponding beta values.

--debug

If set, print detailed information for debugging.
--overwrite

If set, over-write existing output files.
```

30.2 Example

\$ epical mmBlood Test7_mouse_N81_RRBS_beta.tsv -g mm10 -o mmBlood_out

```
2024-04-12 12:15:32 [INFO] The prefix of output files is set to "mmBlood_out".
2024-04-12 12:15:32 [INFO] Loading mmBlood clock data ...
2024-04-12 12:15:32 [INFO] Clock's name: "blood_mm10"
2024-04-12 12:15:32 [INFO] Clock was trained from: "Blood"
2024-04-12 12:15:32 [INFO] Clock's unit: "day"
2024-04-12 12:15:32 [INFO] Number of CpGs used: 90
...
```

THIRTYONE

LICENSE

Copyright (c) 2024 The Python Packaging Authority

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

	_
СНАРТЕ	:R
THIRTYTWO	O

REFERENCE

Epical: an epigenetic age calculator. (In preparation).

INDEX

Symbols

- EPM.train_selected_CpGs.tsv, 60
- 2. EPM.train_EPM_age.tsv, 60
- EPM.train_EPM_age.pdf, 60
- 4. EPM.test_selected_CpGs.tsv, 60
- EPM.test_EPM_age.tsv, 60
- 6. EPM.test_EPM_age.pdf, 60